Unique Paper Code	$:$	62351101
Name of the Paper	$:$	Calculus
Name of the Course	$:$	CBCS-LOCF B.A.(Program) I Year
Semester	$:$	I
Duration	$:$	3 Hours
Maximum Marks	$:$	$\mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. (a) Give the $\varepsilon-\delta$ definition of a limit of a function. Using the same definition , prove that

$$
\begin{aligned}
& \lim _{x \rightarrow c} \mathrm{x}^{2}=\mathrm{c}^{2} \\
& \quad f(x)= \begin{cases}\frac{e^{\frac{1}{x}}-e^{\frac{-1}{x}}}{e^{\frac{1}{x}}+e^{\frac{-1}{x}}} & , x \neq 0 \\
0 & , x=0\end{cases}
\end{aligned}
$$

is discontinuous at $x=0$. Also mention the type of discontinuity. Is differentiable function continuous? Justify your answer.
2. State Leibnitz's theorem for finding the $n^{\text {th }}$ differential coefficient of the product of two functions.

If $y=\tan ^{-1} x$, prove that $\left(1+x^{2}\right) y_{n+2}+2(n+1) x y_{n+1}+n(n+1) y_{n}=0$
If $u=\cos ^{-1}\left[\frac{x+y}{\sqrt{x}+\sqrt{y}}\right]$, then prove that

$$
x \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}+\frac{1}{2} \cot \mathrm{u}=0
$$

3. Prove that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b), whatever be the value of n. Show that the normal at any point of the curve

$$
x=a \cos t+a t \sin t, y=a \sin t-a t \cos t
$$

is at the constant distance from the origin
If ρ_{1} and ρ_{2} are the radii of curvature at the extremities of the focal chord of a parabola $y^{2}=4 \mathrm{ax}$, prove that $\left(\rho_{1}\right)^{-\frac{2}{3}}+\left(\rho_{2}\right)^{-\frac{2}{3}}=(2 \mathrm{a})^{-\frac{2}{3}}$
4. Prove that the curve $a y^{2}=(x-a)^{2}(x-b)$ has at $x=a$, a conjugate point if $a<b$, a node if $a>b$ and a cusp if $\mathrm{a}=\mathrm{b}$.
Find asymptotes of the following curve

$$
x^{3}-x^{2} y-x y^{2}+y^{3}+2 x^{2}-4 y^{2}+2 x y+x+y+1=0
$$

Trace the curve $y^{2}(a+x)=x^{2}(3 a-x)$
5. State Rolle's Theorem and give its geometrical interpretation. Show that there is no real number k for which the equation $\mathrm{x}^{3}-3 \mathrm{x}+\mathrm{k}=0$ has two distinct roots in $[0,1]$

Prove that $\frac{\tan x}{x}>\frac{x}{\sin x}$ for $0<x<\frac{\pi}{2}$
Use Taylor's theorem to prove that $1+x+\frac{x^{2}}{2}<e^{x}<1+x+\frac{x^{2}}{2} e^{x}$ for all $x>0$
6. Find the Maclaurin's Series expansion of the function $f(x)=(1+x)^{m}, m$ is a positive integer.

Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right)$
Find the maximum value of $\left(\frac{1}{x}\right)^{x}$
Find the value of x at which $\sin x(1+\cos x)$ is maximum.

