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Attempt any four questions. All questions carry equal marks. 

 

1. (a)  Give the ε-δ definition of a limit of a function. Using the same definition , prove that 

   lim𝑥→𝑐 x2 = c2        

      𝑓(𝑥) = {
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 is discontinuous at x = 0. Also mention the type of discontinuity. Is differentiable function continuous?                      

Justify your answer. 

2.  State Leibnitz’s theorem for finding the nth differential coefficient of the product of two functions. 

If y = tan−1 x,  prove that (1 + x2)yn+2 + 2(n + 1) x yn+1 + n(n + 1)yn = 0  

If u = cos−1 [
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3. Prove that the curve (
𝑥

𝑎
)

𝑛
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𝑦
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)

𝑛
= 2  touches the straight line  

𝑥
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= 2 at the point (a, b), whatever 

be the value of n. Show that the normal at any point of the curve 

𝑥 = 𝑎 cos 𝑡 + 𝑎𝑡 sin 𝑡 , 𝑦 = 𝑎 sin 𝑡 − 𝑎𝑡 cos 𝑡 

         is at the constant distance from the origin 

If ρ1 and ρ2 are the radii of curvature at the extremities of the focal chord of a parabola  

𝑦2 = 4ax, prove that (ρ1)−
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4. Prove that the curve 𝑎𝑦2 = (𝑥 − 𝑎)2(𝑥 − 𝑏)  has at𝑥 = 𝑎, a conjugate point if𝑎 < 𝑏, a node if 𝑎 > 𝑏 and a 

cusp if a = b.  

     Find asymptotes of the following curve 

 𝑥3 − 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3 + 2𝑥2 − 4𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 1 = 0       

    Trace the curve   𝑦2(𝑎 + 𝑥) = 𝑥2(3𝑎 − 𝑥) 

 

5.  State Rolle’s Theorem and give its geometrical interpretation. Show that there is no real number 

k for which the equation  x3 − 3x + k = 0 has two distinct roots in [0, 1] 

Prove that 
tan 𝑥

𝑥
>

𝑥

sin 𝑥
 for  0 < 𝑥 <  
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Use Taylor’s theorem to prove that  1 + 𝑥 +
𝑥2
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6. Find the Maclaurin’s Series expansion of the function 𝑓(𝑥) = (1 + 𝑥)𝑚, m is a positive integer. 

    Evaluate lim𝑥→0 (
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1
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)

𝑥
 

    Find the value of x at which    sin 𝑥 (1 + cos 𝑥)   is maximum.  

 


