Unique Paper Code	$:$	62351101
Name of the Paper	$:$	Calculus
Name of the Course	$:$	CBCS-LOCF B.A.(Prog.) I Year
Semester	$:$	I
Duration	$:$	$\mathbf{3}$ Hours
Maximum Marks	$:$	$\mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Give the $\varepsilon-\delta$ definition of the limit of a function. Prove that the limit is unique. Using the $\varepsilon-\delta$ definition, prove that

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0
$$

Examine the continuity of the function

$$
f(x)=\frac{1}{1-e^{\frac{1}{x}}} \text { at } \quad \mathrm{x}=0 .
$$

Is continuous function differentiable? Justify your answer.
2. If $\mathrm{y}=\tan ^{-1}\left(\frac{1+x}{1-x}\right)$, find y_{n}.

If $\mathrm{y}=e^{\tan ^{-1} x}$, prove that

$$
\left(1+x^{2}\right) y_{n+2}+(2(n+1) x-1) y_{n+1}+n(n+1) y_{n}=0
$$

If $u=\log \frac{x^{4}+y^{4}}{x+y}$, show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 .
$$

3. Find the condition that the straight line $p=x \cos \alpha+y \sin \alpha$ touches the curve

$$
\left(\frac{x}{a}\right)^{\frac{n}{n-1}}+\left(\frac{y}{b}\right)^{\frac{n}{n-1}}=1
$$

Show that the tangent and normal at any point of the curve

$$
x=a e^{\theta}(\sin \theta-\cos \theta), y=a e^{\theta}(\sin \theta+\cos \theta)
$$

are equidistant from the origin. Prove that portion of the tangent to the curve $x^{m} y^{n}=a^{m+n}$ intercepted between the axes is divided in the ratio $\mathrm{m}: \mathrm{n}$ at the point of contact.
4. Determine the position and nature of double points on the curve

$$
x^{4}-4 y^{3}-12 y^{2}-8 x^{2}+16=0 .
$$

Find asymptotes of the following curve

$$
y^{3}-2 x y^{2}-x^{2} y+2 x^{3}+2 x^{2}-3 x y+x-2 y+1=0 .
$$

Trace the curve $x^{2}\left(x^{2}+y^{2}\right)=a^{2}\left(x^{2}-y^{2}\right)$.
5. State Lagrange's mean value theorem and give its geometrical interpretation. Verify the mean value theorem for the function

$$
f(x)=x^{3}-6 x^{2}-2
$$

in the interval $[0,2]$.
Show that

$$
\frac{2}{\pi}<\frac{\sin x}{x}<1 \text { for } 0<x<\frac{\pi}{2}
$$

Use Taylor's theorem to prove that $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}<e^{x}<1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!} e^{x}$ for all $x>0$
6. Find the Maclaurin's Series expansion of the function $f(x)=\sin x, x \in R$.

For what value of a does $\frac{\sin 2 x+a \sin x}{x^{3}}$ tend to a finite limit as $x \rightarrow 0$.
Show that the function f defined by

$$
f(x)=x^{5}-5 x^{4}+5 x^{3}-1, \forall x \in R
$$

has a maximum value at $x=1$, a minimum value at $x=3$ and neither at $x=0$.

