

Attempt any four questions. All questions carry equal marks.

1. Write a short note on the life and mathematical contribution of any of three of the following Mathematicians:
a. Aryabhata
b. Bhaskara-II
c. Paramesvara
d. Brahmagupta
2. Define Perfect numbers and Amicable numbers. State the properties of Perfect numbers.

Define unit fraction and express $\frac{3}{4}$ and $\frac{5}{8}$ as unit fraction.
Define algebraic numbers and transcendental numbers. Why π is not an algebraic number?
3. Define the Inversion and explain The Fifteen Puzzle.

Find the remainder when
$12345 \times 123456 \times 1234567$ is divided by 13.
What is the Euclidean algorithm? Find the greatest common divisor of 60 and 25.
4. Find the number of distinct permutations of the letters in "Karnataka" and "Chennai"?

$$
\text { Let } A=\left[\begin{array}{lll}
2 & 1 & 3 \\
3 & 4 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 2 & 6 \\
0 & 1 & 3 \\
2 & 1 & 4
\end{array}\right] \text {. Compute the product } A B \text { and } B A \text { whichever exists. }
$$

5. Express the matrix A as the sum of a symmetric and skew symmetric matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & -3 \\
4 & 3 & 1 \\
-5 & 7 & 2
\end{array}\right]
$$

$$
\text { Let } C=\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text {, Find } \lambda \text { so that } C^{2}=5 C+\lambda I
$$

6. Use Cramer's Rule to solve for x and y in the below two equations

$$
\begin{gathered}
x-2 y=4 \\
-3 x+5 y=-7
\end{gathered}
$$

$$
\text { If } A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 2 & 3 \\
-2 & 1 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 & -2 & 4 \\
1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right] \text {, Find } \operatorname{det}(A B), \operatorname{det}(A) \text { and } \operatorname{det}(B) \text { and Verify }
$$

whether $\operatorname{det}(A B)=\operatorname{det}(A) * \operatorname{det}(B)$

